GLOBAL UNIQUENESS FOR THE CALDERÓN PROBLEM WITH LIPSCHITZ CONDUCTIVITIES
نویسندگان
چکیده
منابع مشابه
Global Uniqueness for the Calderón Problem with Lipschitz Conductivities
We prove uniqueness for the Calderón problem with Lipschitz conductivities in higher dimensions. Combined with the recent work of Haberman, who treated the threeand four-dimensional cases, this confirms a conjecture of Uhlmann. Our proof builds on the work of Sylvester and Uhlmann, Brown, and Haberman and Tataru who proved uniqueness for C1-conductivities and Lipschitz conductivities sufficient...
متن کاملGlobal Uniqueness in the Impedance Imaging Problem for Less Regular Conductivities
If L = divr is an elliptic operator with scalar coeecient , we show that we can recover the coeecient from the Dirichlet to Neumann map under the assumption that has only 3=2 + derivatives. Previously, the best result required to have two derivatives. Let R n ; n 3, be a bounded open set and let L = div r be an elliptic operator on with scalar coeecient. We let denote the Dirichlet to Neumann m...
متن کاملLipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities
We consider the electrostatic inverse boundary value problem also known as electrical impedance tomography (EIT) for the case where the conductivity is a piecewise linear function on a domain Ω ⊂ Rn and we show that a Lipschitz stability estimate for the conductivity in terms of the local Dirichlet-to-Neumann map holds true.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولUniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities
We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body Ω ⊂ Rn when the so-called Neumann-to-Dirichlet map is locally given on a non empty curved portion Σ of the boundary ∂Ω. We prove that anisotropic conductivities that are a-priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum of Mathematics, Pi
سال: 2016
ISSN: 2050-5086
DOI: 10.1017/fmp.2015.9